Figure 5. Gravitational and gravito-magnetic forces between two massive bodies

Gravitational and gravito-magnetic forces on two masses a distance (x) apart both moving with a velocity (v) and at a distance (r) from a central comoving observer.
Gravito-magnetic

Force $\left(F_{\text {gravmag }}\right)$ | Body (with |
| :--- |
| mass m_{1}) |

X

Cosmological radius
$v=H r$ (where H is Hubble's constant)

Body (with mass m_{2})

Gravito-magnetic Force ($F_{\text {gravmag }}$)
$F_{\text {grav }}-F_{\text {gravmag }}=\frac{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}} m_{1}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}} m_{2}}{4 \pi \varepsilon x^{2}}$

As the velocity (v) approaches the speed of light (c), the resultant force on each mass ($F_{\text {grav }}-F_{\text {gravmag }}$) approaches zero.

